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Persistent Organic Pollutants (POP) are a class of stable pollutants difficult to be removed from wastewaters
and environment by classical methods. Among them, the Polycyclic Aromatic Hydrocarbons (PAH),
PolyChlorinated Biphenyls (PCB) and PolyChlorinated Benzenes (CBz) are very toxic compounds, presenting
a low volatility, biodegradability, and solubility in water. Their high bioaccumulation capacity in the aquatic
environment sharply increases with the number of carbon, chlorine atoms, and aromatic rings in the molecule.
Such characteristics may lead to an incomplete removal in the wastewater treatment plants (WWTP), their
level in effluents being frequently close and sometimes slightly overstepping the admissible limits. By using
a dynamic 2D advective-dispersive model with accounting for pollutant inter-phase transport among water,
biota, sediment, and air, the paper proves by means of simulated scenarios how such a low level but quasi-
continuous release can turn into a serious river pollution problem. A case study exemplifies this comparative
analysis of the pollutant fate for some PAHs, PCBs, and CBz-s, by indicating conditions that may lead to the
pollutant dangerous accumnulation in the riverbed. Model predictions also prove that frequent POP releases
around the regulation limits can become dangerous on a long term due to the migration of the pollution front
downstream the river as soon as the aquatic phase equilibrium is reached in the discharge section. The risk
assessment also points out the importance of considering in the model all the pollutant properties (e.g.
volatility and biodegradability) besides the bioaccumulation terms related to the high Ig(BCF) and Ig(K )
indices, thus highlighting fate similarities among POPs.
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POPs are organic compounds that are resistant to
environmental degradation through chemical, biological,
and photolytic processes. POPs result as by-products from
(petro)chemical industry, from power plants or waste
incineration, or continue to be produced (eveninrestricted
quantities) for various industrial use. They are a class of
stable pollutants, difficult to be removed from wastewaters
by means of classical treatment methods in WWTP.
Consequently, they have been observed to persist in the
environment, to be capable of long-range transport,
bioaccumulate in human and animal tissue, biomagnify in
food chains, and to have potential significant impacts on
human health and environment. POPs include several sub-
classes, that is PCBs, CBz-s, PAHs, various insecticides and
pesticides, and organometallic compounds. Starting from
1995 they began to be systematically investigated through
a UN Programme, while the Stockholm Convention on 2001
restricted the POP production worldwide [1]. Unfortunately,
any such regulation does not exist in most African countries
and unrestricted use and accidental/illegal release in the
environment continue unabatedly.

POPs are characterized by a low solubility in water but
high in lipids, low-to-medium volatility, and a high molecular
mass. POPs with molecular weights lower than 236 g/mol
are less toxic, less persistent in the environment, and have
more reversible effects than those with higher molecular
masses [1]. POPs are frequently halogenated, usually with
chlorine, the more chlorine groups a POP has, the more
resistant it is to chemical/biological degradation. The high
lipo-solubility results in the possibility to pass through
biological phospholipid membranes and to bioaccumulate
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in the fatty tissues of living organisms. POPs are extremely
toxic, and exposure can cause death and illnesses
including disruption of the endocrine, reproductive, and
immune systems, neurobehavioral disorders, and cancers.

PAHs are a sub-class of POPs that are usually formed by
the incomplete combustion of organic materials, such as
wood or fossil fuels, but are also products in the
petrochemical industry. PAH molecules are made up of
three or more benzene rings, at least two of which are
fused with two neighbouring rings sharing two adjacent
carbon atoms. In addition, some PAHs contain hetero-
atoms such as nitrogen and sulphur. The most toxic
members of this class are molecules that have four to seven
rings. Among these, benzo[a]pyrene of five unsubstituted
aromatic rings is the most studied because of its relatively
high environmental levels and high level of toxicity resulting
inlarger health impact than any other PAH identified in the
environment.

In spite of increasingly protection measures, PAH
discharges continue to contaminate the environment
especially in the industrial area [ 18]. Due to rapid economic
development and urbanization, the aquatic levels of PAHs
may be quite significant in certain over-populated locations,
for instance being up to 10 pug/L in Pearl river delta (China,
[2]), up to 200 ng/g dw in the bay sediments [3], up to
2700 ng/g dw in sediments and 210 ng/g ww in biota of
coastal lagoons [4], and up to 48 ug/L in sediments of
large harbors [5]. The maximum levels in surface waters
imposed by PAH-regulations vary from 10 ng/L
[benz(a)anthracene, chlor-naphtalene] to 2.4 ug/L for
naphthalene. PAHs deposited onto sediments could be
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Table 1
2D DYNAMIC MODEL FOR
DISPERSION AND UPTAKE-
CLEARANCE OF POLLUTANTS IN
THE RIVERINE PATHWAY [6-8]
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redissolved or re-suspended in association with fine
particles becoming bioavailable to aquatic organisms.
Despite environmental ubiquity and highly toxicological
importance of PAHs, there are few reports regarding the
accumulation potential especially for long-term discharges
of low levels.

CBz-s are persistent hydrophobic organic compounds
widely distributed in the environment due to their long
history of use in industry, agriculture and households, such
as insecticides, pesticides, deodorizers, soil fumigants,
disinfectants, solvents, precursors for the production of dyes
and silicone coatings [6]. CBz-s include 12 representatives
with 1-6 chlorine atoms in the molecule, the bio-
accumulation potential in the environment increasing with
the chlorine content, corresponding to Ig(K ) > 4-5 and
Ig(BCF) > 2-3 (see notations of tables 1-3). the toxicity of
penta-CBz and hexa-CBz (HCBz) for the human health and
environment is comparable to those of PCB and dioxins.
CBz pollutants have been produced in large quantities and
discharged in the environment without any precaution until
70-80’s, with a production of hundreds of thousands of
tones per year. The current EU and international regulations
recommend measures to control the waste stocks and
industrial discharges containing CBz, while their use is
subjected to regulations and restrictions in most of the
industrialized countries, due to their high toxicity and
frequent accidental releases in the environment (HCBz was
banned from use in the US from 1966)[6]. Unfortunately,
CBz-s inevitably appear as by-products in the production of
chlorinated organics, while their removal in classical
WWTP is difficult and suffers from some inconvenients
(e.g. amax. 60% removal yield for TeCBz and HCBz).

The EU thresholds of CBz-s in water are of 0.4-3.2 ng/L
for penta-CBz and HCBz, and of 0.4-10 ug/L for other CBz.
However, frequent over-steps of such limits are reported in
industrial area, that is up to 13 ug/L in water, up to 42 ug/g
dw in sludge, and up to 1110 pg/g TOC in sediments [6]. If
an accidental CBz release of low level (of concentrations
in effluents being close to the admissible limits) can not
have a high impact on the aquatic environment, the
pollutant being quickly dispersed over the river section,
this may not be the case for the heavy CBz-s, due to the
high bioaccumulation potential. Consequently, it is of
interest to investigate what effect can have such an
incomplete treatment of CBz-s in a WWTP on a long term
over the riverine pathway.

PCBs are a class of POPs with the general formula C H,

Cl_and with x = 1-10 chlorine atoms attached to the
Bip’henyl. Among the 209 congeners of PCBs, ca. 140 have
been manufactured as commercial mixtures of viscous
liquids. The coplanar PCBs present toxicity comparable to
those of dioxins, the increase of the chlorine content leading
to alower biodegradability and solubility in water, to a higher
toxicity, bioaccumulation capacity and persistence in the
environment [7].

PCBs are low volatile and very stable, with half-lifetime
of 10-30 years, with a high toxicity including the carcinogen
and mutagen effect on fauna. Their resistance to thermal,
biological or chemical degradation leads to a high mobility
and persistence, negatively affecting the dispersion area
on a long-term. PCBs have extensively been used in various
industries, being synthesized on a large scale and
discharged in the environment without any precaution until
80’s when their production has been banned and their use

Table 2
CHARACTERISTICS OF SOME PCBs, CBz-s, AND PAH POLLUTANTS USED IN THE COMPARATIVE ANALYSIS OF

THE POP FATE IN A RIVERINE PATHWAY (ww= wet WEIGHT, dw= dry WEIGHT)
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(k) for CBz one uses experimental values; for PCB and PAH one uses the correlation K, = LK ;. ; L= organic mater content in sediment (wt. fraction, L=0.04) [6-8].

(m) for CBz and PCB one uses experimental values; for PAH one uses the correlation LogK ,. = LogK ,,, —0.21 [30]; K, = “:,oc /c:V; C:,oc= equilibrium concentration in

sediment based upon organic carbon content; TOC = total organic carbon.

(n) for CBz and PCB one uses experimental values; for PAH one uses the correlation from PCB: Log('k,, )=-0.5041+1.1951Log( p, ), with p, inPa.
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restricted in most of the countries. Despite of that, PCB
inevitably persist in the environment, and inherently appear
as by-products in the production of pesticides, insecticides,
or chlorinated aromatics. The classical treatment in a
WWTP is ineffective, while advanced physical, chemical,
or biological treatment methods are very costly being not
applicable a large-scale [7].

While the EU regulations set PCB limits in the aquatic
environment to 1 ng/L in surface waters, and to 800 ng/g
dw in sediments and sludge, the wastewaters and WWTP
waste sludge, sediments, industrial wastes, and levigates
from waste deposits can sometimes present significant
loads, up to 2u g/L (water), 10 pg/g dw (sludge), 31 ug/g
dw (sediment), while the waste and levigates can present
even higher PCB contents depending on the waste type.
These current loads are however much lower than the
pollution levels of the rivers and lakes with PCBs recorded
before 1985 [7].

Despite environmental ubiquity and highly toxicological
importance of POPs, there are few reports concerning the
accumnulation potential especially for long-term discharges
of low levels. Recently the researchers comparatively
studied the pollution potential of a low-level but frequent
discharge of CBz-s froma WWTP in ariver [6]. Simulations
proved how a small but quasi-continuous release of CBz
with higher chlorine content can become dangerous for
the whole riverine pathway on a long term (years), due to
the “moving pollution front” effect propagated
downstream the river as soon as the aquatic inter-phase
exchange equilibrium tends to be reached in the critical
discharge section. A similar conclusion was derived by
[7,8] for POPs of high molecular mass, revealing a similar
fate and bioaccumulation process for heavy CBz-s (penta-
CBz, hexa-CBz) and for medium PCBs (tri-/tetra-CB).
Simulations also proved that an interval of ca. 15 days of
quasi-continuous release (even of low level) is enough for
reaching the phase-equilibrium in the discharge section,
then leading to a moving-down pollution front in the
riverbed. The pollution is higher in biota and sediments as
the POP is more persistent (i.e. for > 5, and > 3).
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Fow= 107 (plants, fauna)

The aim of this paper is to extend this analysis by studying
the river pollution potential of some PAHs present in
discharges at concentrations in the vicinity of regulations
limits. Various accidental release scenarios are analysed
by using a combined advective-dispersive dynamic model,
including the phase-exchange and bioaccumulation terms
in biota and sediments together with pollutant
biodegradation and evaporation through water surface. A
comparative analysis of simulated case studies involving
CBz-s and PCB pollutants under similar release conditions,
points out the relationship between the pollutant physical
properties, its chemical structure and bioaccumulation
capacity. The analysis points out that not only the
bioaccumulation terms are of importance for a complete
risk assessment, but also a holistic approach is necessary
by considering all relevant propetties of the pollutant, such
as its volatility and biodegradability.

Release scenarios and fate of some PAHs, CBz-s, and
PCBs
Simulation model

To simulate the pollutant fate downstream a release
point located in the middle of a river (x=y=0), a 2D
advective-dispersive dynamic model, of moderate
complexity, has been adopted [6,9]. Prediction of the
pollutant concentration field c_ (x, y,t) in water is made by
solving the differential mass balance written for an
infinitesimal small section of the river (table 1). The model
includes dynamic, convective and diffusional transport
terms in the water, but also terms accounting for pollutant
reaction, or inter-phase transport rates leading to
disappearance (uptake) or appearance (clearance) of the
pollutant in the river by various mechanisms such as:
evaporation (‘ev’), runoft (‘p’), biodegradation (‘d’), uptake
or clearance by/from biota, sediments or suspended solids.
Several simplificatory assumptions are presented in the
Table 1, while a schema of the inter-phase transport
processes is given in figure 1.

By assuming that pollutant biodegradation occurs only
in the water (index ‘w’), the inter-phase exchange
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dynamics of the contaminant can usually be satisfactorily
represented by a pseudo first-order kinetics, written for
every location of the river. The model solution gives the
dispersion of the pollutant and its partition among phases
at a certain moment, but also the dynamics of the pollutant
distribution in water, biota and sediments during the
continuous release. The rate constants k. of the inter-phase
transport (from the source phase i to thé receptor phasej,
and vice-versa) are related to the partition coefficients K
—k /k of the pollutant between every two phases i in
contact. The thermodynamic equilibrium is reached when
the uptake rate r, = &, \c of the pollutant from phase i to
phase j, equals the clearance rate r="~k /c of the pollutant
from phase j, that is K= c* Ac* The Constants K. are
determined expenmentally or, when no such datd are
available, they are correlated with the structural
characteristics or propetties of the pollutant, such as the
K, (octanol-water partition coefficient of the pollutant),
or S (aqueous solubility of the chemical). Maria & Maria
(7] present areview of such empirical correlations used to
characterize the inter-phase transport for the PCBs, while
extended reviews are reported in the literature for most of
pollutants [10-17]. The common notations used for the
partition coefficients are given in table 2. It is to remark
that bioaccumulation capacity is expressed by BCF =K
i.e. the water-biota partition coefficient, and by kfus
proportional to K_, that is the sediment organic carbon
(TOC) to water part1t1on coefficient.

To solve the model for known initial and boundary
conditions, a hybrid analytical-numerical procedure was
applied [6-8]. It is to observe that a separate analytical
solution can be obtained for the stationary dispersion,
leading tothe ¢ (x,y) field, and also for the phase transport
leading to the pollutant distribution in biota ¢ L, (1), and
sediment c (x,y,f). Consequently, the solv1ng procedure
starts from the known initial conditions of the river phases
and discharge characteristics. Then, by keeping a certain
trade-off between the solution precision and the required
computational time, a small time-step is adopted. Over
one integration step, the pollutant concentration in water
c (x Y, t) is evaluated under quasi-steady-state assumptions
by using the biota (‘") and sediment (‘s’) field from the
previous time-step ¢ (x y,t - At) (index ‘e’= b,s). Then, the
phase transfer equatlons are applied with known ¢ (x y)
values for correcting the biota/sediment fiefd of
concentration and the time is incremented with one step.
The rule is repeated step-after-step until a chosen final
time, leading to the dynamics of the pollutant distribution
in water, biota, and sediment.
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Fig. 1. Schema of the inter-phase transport and
pollutant degradation in the riverbed

Release scenarios

To simulate various release scenarios of individual
pollutants in the control section (ca. 2000 m downstream
the release point) of an analysed river, three representatives
have been selected from every class of PAHs, CBz-s, and
PCBs, of comparable molecular mass and lg(K ). The
phy51cal and transport properties of these pollutants are
presented in table 2. It is to observe that every class
includes a light, a moderate heavy, and a heavy Compound
that is: I) naphthalene (C, H,); anthracene (C H
benzo[a]pyrene (C,H ,); ii) l2 dichlorobenzene (BCBZ
CH,CL); 1,2,4,5- tetrachlorobenzene (TeCBz, CH,CL);
héxachlorobenzene (HCBz, C,CL); iii) 2,4’,5- trichloro-
biphenyl (PCB-31, C H.CL); 2f 5 5 tetrachloroblphenyl
(PCB-52, C,H.C1); 2,2 3 44’ 5-hexachlorobiphenyl (PCB-
137, ¢ H,CH).

It is'to’ remark that the solubility in water of CBz-s is
higher than those of PAHs and PCBs. The volatility is higher
for naphthalene and light CBz-s, as is their biodegradability.
Anthracene biodegradability is also higher than those of
heavy-PAHs, CBz-s, and PCBs. The values of Ig(K_ ) > 3-4
for all considered POPs clearly indicate™a high
bioaccumulation capacity in the aquatic environment.
However, a simple “translation” of conclusions about
pollutant fate in the riverine pathway based on only similarity
in the Ig(K ) values is expected not to be applicable
when large “differences in volatility and biodegradability
are also present. Consequently, a holistic approach of the
dispersion and transport between phases is necessary
based on the adopted model.

The input data, including the river characteristics and
the constant flow rates are presented in table 3. For a better
comparison among POPs, a pollutant level at source of ca.
two-times the admissible levels in surface waters have
been adopted (i.e. ca. 200 ng PAH /L, ca. 2000 ng CBz/L,
and 2 ng PCB/L)[19].

Simulations are performed for every mentioned POP
over ca. 1000 days of quasi-continuous pollutant release,
because experimental investigations on fish reported
bioaccumulation times of 15-256 days until the equilibrium
is reached [20]. The dynamics of the resulted
concentration field in water, biota, and sediments reveal
the pollutant fate in the riverbed on a long term. For instance
the benzopyrene concentration field after 1 day, 250 days,
and 1000 days of continuous release is presented in Figure
2, revealing the tendency of reaching the saturation in the
vicinity of the source (over ca. 500 m after 1000 days).

The pollution front propagation (where loads are close
to the equilibrium) can be better observed by plotting the
pollutant concentrations in all phases in contact in the
middle of the river, at certain times. Figure 3 displays such
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Fig. 2. Dynamics of the benzopyrene concentration
in water along the river, downstream the source,

PCB

after 1 day, 250 days, and 1000 days of continuous
release. The average concentration at source is of
ca. 200 ng/L, i.e. four-times higher than the
regulations’ limit.

an axial concentration profile in water, biota, and sediment
for the selected PAHs, CBZ-s, and PCBs after 1000 days of
quasi-continuous release. In the PAH case, while
naphthalene and anthracene are quickly dispersed in water,
reporting relatively low levels in biota and negligible ones
in sediment, benzopyrene already reached the equilibrium
over a large section of ca. 400-500 m downstream the
source, and its level in biota (500 ng/g ww) and sediment
(5500 ng/g dw) is very high, overstepping the admissible
limits. Such differences in the PAH fates, apparently
surprisingly because all selected compounds present high
values lg(K ) > 3, can be explained by the differences in
the blodegradatlon and evaporation rate constants
especially in the naphthalene case. On a long-term, the
situation can become dramatic due the low
biodegradability and high bioaccumulation capacity of the
heavy POPs (such as benzopyrene) the pollution front
continuing to move down the river as soon as the
equilibrium is reached near the source.

A similar analysis is repeated for the CBz case, by
simulating for every individual pollutant the dynamics of
the concentration field in all aquatic phases in contact.
The axial concentration profiles in the river, downstream
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Fig. 3. PAH (up), CBz (middle), and PCB (down) concentrations
along the river longitudinal axis in water, biota and sediment,
downstream the source, after 1000 days of continuous release.
Concentrations in water at source are ca. two-times higher than the
regulations’ limits. The discharged pollutant flow rate is of 7.6x10®
kg PAH/s (ca. 200 ng/L at source), of 8.0x10° kg CBz/s (ca. 2000 ng/L
at source), and of 7.0x 10 kg PCB/s (ca. 2 ng/L at source)

the source, are displayed in figure 3 after 1000 days of
contaminant release. By comparing the CBz distribution, it
clearly appears that heavy contaminants, such as HCBz,
already reached the equilibrium and accumulated in the
biota and sediments over more than 1000 m downstream
the river (ca. 40 mg/g ww in biota and 8mg/g dw in
sediment). TeCBZ, presenting a higher biodegradability,
display lower equilibrium levels in biota and sediment,
while the accumulation degree is practically negligible for
the DCBz case.

In the POP case, repeated simulations of the pollutant
distribution dynamics reveal very high differences among
representatives, as indicated by the axial concentration
profiles displayed in figure 3. The PCB pollutant load in

http://www.revistadechimie.ro 559



biota and sediment is higher, and distributed closer to the
source, as its molecular mass is higher, corresponding to
higher chlorine and phenyl content, and higher Igk_ ~and
IgK = constants. Such aresult can be explained by the very
low volatility and biodegradability of all investigated PCBs,
the differences in the pollutant fate being determined by
the thermodynamic limitations of the transport between
water-biota [Ye 1g(BCF) value| and water-sediment [i.e.
Ig(K ) value] phases.

There are some similarities in the pollutant fate between
different POP classes, in the sense that heavy compounds
tend to reach quickly the saturation levels in biota and
sediment near the release point, and then the pollution
front is slowly moving downstream, eventually polluting
the whole river on a long term. It is also to remark that the
saturation levels in biota and sediments are very high, even
if the POP concentration in water is fluctuating around the
admissible level. For instance, in the benzopyrene case
(fig. 3), for a concentration in water in the discharge section
of ca. 200 ng/L, the saturation concentrations in the same
section in biota (500 ng/g ww) and sediment (5500 ng/g
dw) are very high due to the large values of the phase
partition coefficients BCFand K . The same observation
is valid for the heavy HCBz and hexa-CB. Consequently,
frequent accidental releases of such POPs, even if of low
levels, not exceeding much the admissible limits, are very
dangerous due to their high bioaccumulation potential and
persistence in the environment.

PAH- Axial concentrations (after 250 days)
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Fig. 4. PAH concentrations along the river longitudinal axis in water,
biota and sediment, downstream the source, after 250 days of
continuous release, for a discharge below the regulations’ limits
(of 2400 ng/L for naphthalene, 63 ng/L for anthracene, and 50 ng/L
for benzopyrene). The discharged pollutant flow rate is of 1.5x10°
kg PAH/s (ca. 40 ng/L at source)

To confirm such a conclusion, one simulates release
scenarios of PAHs of low levels, corresponding to ca. 40
ng/L concentration in water at source, that is lower than
the admissible limit of 50 ng/L. The results, presented
figure 4, reveal a very interesting situation. After 1000 days
of quasi-continuous release, the content of naphthalene
and anthracene in biota is still low, not reaching the phase-
equilibrium, and negligible in sediment. In the benzopyrene
case, the situation is completely different: its high
bioaccumulation potential determines a high
accumulation in biota (100 ng/g ww) and sediment (1100
ng/g dw), overstepping the admissible limits.

Conclusions
By using a 2D dispersion model, of medium complexity,
combining the spatial dispersion with bioaccumulation
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dynamics, it is possible to simulate the pollutant transport
and its fate in a riverine pathway, downstream a small-
size contamination source. The model can be used to
predict the negative effects of accidental discharges of
POPs on a riverbed (water, sediment and biota) over long
time intervals. The solution precision can be controlled by
means of the chosen integration time-step used to solve
the differential mass balance written for all aquatic phases
in contact. The model is quite flexible, and can easily be
extended to account for variations in flow rates and
pollutant loads, in ariverbed of variate geometry, by dividing
the analyzed riverbed in multiple sections. The model can
be coupled with a statistical analysis associated to the
accidental release of a pollutant, in order to derive the risk
contours, predicted effects, and environmental impact
downstream the river for various release scenarios [21].

For the analyzed POP representatives, it appears that
small, but quasi-continuous discharges of low level, not
exceeding much or close to the admissible levels in water,
can become dangerous for the whole riverine pathway on
a long term (years), due to the “moving pollution front”
effect propagated downstream the river as soon as the
aquatic inter-phase equilibrium tends to be reached in the
critical discharge section. The danger is as high as the POP
molecular mass and the inter-phase partition constants (
BCF water-biota, and K, water-sedlment) are higher, and
its volatility and blodegradablhty are smaller. Simulations
proved that after ca. 15 days of quasi-continuous release,
the phase-equilibrium is reached in the discharge section
for the heavy POPs, then leading to the pollution
propagation downstream the river.

The study indicates that a holistic approach of the river
pollution is necessary, by accounting transport among all
phases in contact, but also considering all relevant pollutant
properties such as volatility and biodegradability. Thus, in
the case of POPs presenting a significant bioaccumulation
potential [Ig(BCF) >2,1gK > 3], their high biodegradability
and/or volatility can induce a lower bioaccumulation rate
and a much longer time to reach the phase-equilibrium in
the riverbed.

For the heavy, low biodegradable POPs, frequent
releases of low level, close but lower than the admissible
limits, are still very dangerous due to their high
bioaccumulation potential and persistence in the
environment. Simulations reveal that such a situation (e.g.
the benzopyrene case) will inevitably lead to high and
unacceptable levels of POP in the aquatic biota and
sediment on a long term, and to the same “moving pollution
front” effect in the riverbed.

The predictions offered by the adopted pollutant
dispersion / bioaccumulation model, coupled with the risk
analysis of the WWTP, can offer a base to simulate various
plant failure scenarios and the analysis of accident
consequences. Such evaluations can be used to derive site-
specific risk assessments, can support failure prevention
measures, WWTP optimization and risk management, and
can indicate suitable monitoring locations of river pollution.
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